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Abstract

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several 
biomedical applications. While several methods have been proposed for accurate detection of surgical instru-
ments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This 
paper introduces a Surgical Instrument Detection Framework (SIDF) for accurate identification of surgical instru-
ments in complex laparoscopic video frames.

Methods: Based on the Generalized Near-Set Theory, a novel image segmentation algorithm, termed General-
ized Near-Set Theory-based Image Segmentation Algorithm (GNSTISA) was developed. According to SIDF, 
first GNSTISA is executed to segment the laparoscopic images. Next, the segments generated by GNSTISA 
are filtered based on their color and texture. The remaining segments would then indicate surgical instruments.

Findings: Using the laparoscopic videos of varicocele surgeries obtained from Hasheminezhad Kidney Center, 
the performance of GNSTISA was compared with previous image segmentation methods. The results showed that 
GNSTISA outperforms the earlier algorithms in term of accurate segmentation of laparoscopic images. Moreover, 
the accuracy of SIDF in identifying the surgical instruments was found superior to that of other methods.

Conclusions: SIDF eliminates the limitations of previous image segmentation methods, and can be used for pre-
cise identification of surgical instrument detection.
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Background and Objectives
Laparoscopy is a relatively new minimally-invasive 
surgery method, in which, the surgeon rather than 
looking directly into the inside of the patient's body, 
uses a camera inserted into the patient's body called 
“laparoscope” to perform the surgical operation. The 
laparoscopic video frames can be recorded and pro-
cessed to yield valuable information. The extracted 
information can be used in improving the operation 
room performance, surgical simulations, and robotic 
surgeries. Simulating a laparoscopic surgery can be 
used in training surgeons and enhancing their surgi-
cal skills [1].

Segmentation of laparoscopic video frames and 

identifying surgical instruments in each frame allow 
for extraction of more useful information. For exam-
ple, time-waste in each laparoscopic surgery can be 
identified and analyzed using surgical instruments’ 
pattern of usage and motion track. Analysis of lapa-
roscopic time-waste in turn can lead to identification 
of its causes, thereby helping reduce the potential 
time-waste, and hence improve the efficiency of re-
sources utilization and shorten the time required for 
each surgery.

In image segmentation, the pixels are grouped into 
different homogeneous regions using mathemati-
cal algorithms [5]. Several image segmentation al-
gorithms have been introduced [5, 11-15]. While in 
some methods, images are segmented based on 
their texture features [11-13, 16], others employ color 
features for segmentation [17-20]. There are also a 
number of methods, which combine color and texture 
features for image analysis [5, 15]. 
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Greoger et al. developed a method for identifying 
surgical instruments using artificial markers [21]. In 
this method, an artificial marker (a color strip) with 
the color different from the colors of all visible tis-
sue cells is used on the distal part of the surgical 
instrument shaft to help identifying the surgical in-
struments. While this method helps fast identifica-
tion of surgical instruments, it has some limitations. 
For instance, because in many video frames only 
the tool tip is observed, the artificial markers on the 
distal part of the instrument (the colored regions of 
the instrument) become invisible. Moreover, blood 
and other liquids may cover the instrument, and 
hide the artificial markers. These limitations render 
artificial marker detection difficult and oftentimes 
even impossible. 

There are methods attempting to identify surgi-
cal instruments focusing on the pixels of instrument 
edges [2,4] and tool tips [4]. Although edge detec-
tion methods can help identify instruments with high 
precision in the absence of a shadow of surgical in-
strument, they are error-prone in the presence of an 
instrument’s dark shadow on its neighboring soft tis-
sues [2,4]. Another study introduced a color-based 
method for surgical instrument detection [3]. Although 
this method runs fast, it may misdiagnose dark shad-
ows as surgical instruments.

There are several challenges towards laparoscopic 
instrument detection:

1. Illumination variation: Illumination variation leads 
to variation of color of metallic surgical instruments. 
For instance, different pixels of a silver instrument 
may appear in different colors in a particular image. 
Moreover, variation in illumination can change the av-
erage intensity of an identical object in different im-
ages, which challenges the video processing.

2. Complex background: Laparoscopic images in-
clude surgical instruments, tissues, and vessels. 
Each tissue includes a number of asymmetric capil-
laries. Moreover, the internal cells of a tissue have 
non-uniform structures that are visible while the tis-
sue is being cut. These issues correct segmentation 
of the images difficult for texture descriptors. In addi-
tion, soft tissue usually changes and moves because 
of its biological activities, leading to complex back-
grounds in the laparoscopic images. Camera motion, 
on the other hand, adds to background complexity of 
the laparoscopic images. Hence, background detec-
tion based on analyzing the motion patterns of pixels 
is an error-prone task.

3. Vague instrument boundaries: The shadow of an 
instrument on the soft tissue may prevent identifica-
tion of the exact boundaries of the instrument.

4. Invisible tool tip: The shape of the instrument tip 
can help discriminate different surgical instruments. 
However, since the instrument tip is not visible inside 
the tissue, the shape of the instrument tip alone can-
not always be used for instrument detection.

These challenges limit the effectiveness of ap-
proaches like background modeling [22-23], edge 
detection [24-25], color and/or texture image seg-
mentation [3, 5, 26, 27], and artificial marker-based 
segmentation [21] in instrument detection. Therefore, 
there is a need to further improving the previously 
developed methods of surgical instrument detection 
in order to eliminate these limitations. This paper 
proposes a two-stage Surgical Instrument Detection 
Framework (SIDF). For this purpose, first, a new im-
age segmentation algorithm called Generalized Near-
Set Theory-based Image Segmentation Algorithm 
(GNSTISA) is executed. The segments generated by 
GNSTISA are then filtered based on their color and 
texture and the remaining segments will indicate sur-
gical instruments.

Methods
Image Resource

Laparoscopic videos of varicocelectomy surger-
ies were obtained from   correct segmentation of 
the images Hasheminejad Kidney Center (Tehran, 
Iran) in [2010-2011]. The proposed method was 
evaluated using the video frames. SIDF was ap-
plied on some complex video frames of laparo-
scopic surgery. 

Generalized Near-Set Theory-based Image Segmen-
tation Algorithm (GNSTISA)

GNSTISA is an image segmentation algorithm de-
veloped based on the Generalized Near-Set Theory 
(GNST). The GNST has been described elsewhere 
[28-29], and a brief description of it is provided in 
appendix the Additional File 1. The main stages of 
the GNSTISA method are displayed Figure 1. GN-
STISA calls two different image segmentation al-
gorithms with different feature sets. One algorithm 
uses color descriptors as input, and the other deals 
with a combination of texture and edge descriptors. 
Color descriptors are defined in the L*U*V* color 
space because of their reportedly high performance 
in this space in clustering pixels [15].

The first stage of GNSTISA produces too many 
small segments that should be merged to produce 
a few large segments, representative of the objects. 
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In our method, two overlapping segments can be 
merged if their features have similar values. The 
similarity of two segments is measured based on 
GNST. GNST provides a framework for segmenting 
images based on multiple feature sets, which allows 
using several features to describe objects of a set, 
rather than using only a single feature as in tradi-
tional image segmentation methods.

If the generated segments satisfy the proposed 
merging conditions defined by GNST (Additional 
File 1), then they can be merged. GNST approxi-
mates each set (of pixels) considering its 'near' ob-
jects (objects having similar features [28-29]).

Surgical Instrument Detection Framework (SIDF)

SIDF includes two main stages (Figure 2): 
- Segmentation images using the GNSTIS algo-
rithm: each video frame is segmented by the GN-
STIS algorithm and the output will be used in the 
next stage.
- Filtration of the image segments based on their 
color and texture: if the color and texture of a seg-
ment differ from those of the surgical instruments, 
they will be filtered. Finally, a bi-color image (black 
and white) is produced in which the white region 
indicates surgical instrument.

Figure 1     The main stages of GNSTISA for segmenting laparo-
scopic images

Figure 2     The main steps of SIDF for surgical instrument detection 
in laparoscopic images

Figure 3     An example of executing SIDF on a sample laparoscopic video frame: (a) the original image of a sample video frame, (b) segments 
obtained from the 1st stage of SIDF on the sample video frame, (c) surgical instrument regions identified by 2nd stage of SIDF on the segments.
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Figure 3     The laparoscopic video frames and their corresponding SIDF outputs

Table 1    Comparing the performance of GNSTISA with other image segmentation algorithms in laparoscopic 
video frames 
 

Algorithm Q(S) 

 Min                       Max                      Mean 

Seeded region growing algorithm [32] 0.0363 0.0472 0.0408 

Color and texture integrating algorithm [14] 0.1020 0.1155 0.1083 

Hill climbing algorithm [33] 0.1625 0.1842 0.1708 

GNSTISA (This study) 0.0158 0.0199 0.0178 
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As an example, consider the sample laparoscopic 
video frame in Figure 3(a). After executing the first 
stage of SIDF, the video frame is segmented as illus-
trated in Figure 3(b) (different segments are shown 
in different colors for better visualization). The seg-
mented image is then input to the second stage of 
SIDF. The output is illustrated in Figure 3(c); the white 
region represents the surgical instrument.

Performance Evaluation

Evaluating the performance of the GNSTIS algorithm
We compared the performance of GNSTISA with 

other segmentation algorithms. For this purpose, 
the quality of image segmentation had to be mea-
sured. There is no established standard for quantized 
evaluation of image segmentation results [30]. How-
ever, Borsotti et al. [31] proposed a criterion called 
Q(S) for image segmentation evaluation, which was 
used in previous image segmentation algorithms [30-
31]. For the ease of comparison, we used the same 
method in this study to evaluate the quality of image 
segmentation based on the proposed algorithm. Q(S) 
is formulated as follows [30-31]:		      

where TP denotes the number of correctly identified 
surgical instruments, and N represents the total num-
ber of visible surgical instruments in the examined 
laparoscopic video frames.

Evaluating the performance of surgical instru-
ment detection

The performance of surgical instrument detection 
was evaluated based on its precision. The precision 
was calculated as below:

where, S denotes the segmented image, M and N 
refer to the image dimensions, R denotes the number 
of identified regions in the segmented image, Ai, rep-
resents the size of the region I in pixels, R(Ai) is the 
number of regions with area equal to Ai, and ei, is the 
sum of the Euclidean distance between the features 
of the pixels in a cluster and the representatives of 
that cluster. A smaller value of Q(S) indicates a better 
segmentation result. 

Results

The laparoscopic images shown in Figure 4 were 
segmented using the seeded region growing algo-
rithm [32], algorithms integrating color and texture 
features [14], hill climbing algorithm [33], as well as 
GNSTISA, and the Q(S) corresponding to each al-
gorithm was calculated. Table 1 compares the Q(S) 
values calculated from the GNSTISA and other algo-
rithms. As seen, GNSTISA outperforms the previously 

Table 2    Comparison of the performance of SIDF with other surgical instrument detection methods 
 

Method Precision of laparoscopic instrument detection (%) 

Cano et al. [2] 87.3 

Doignon et al. [3] 83.8 

Voros et al. [4] 86.7 

SIDF (This study) 94.3 
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developed algorithms in terms of accurate segmenta-
tion of laparoscopic images.

To examine the performance of SIDF in surgical 
instrument detection, three hundred laparoscopic 
video frames were randomly selected from the lapa-
roscopic varicocelectomy videos, segmented, and 
subjected to surgical instrument detection analysis. 
Table 2 compares the performance of SIDF with 
other proposed methods. As shown, the SIDF out-
performed other methods in accurate identification of 
the surgical instrument.

Discussion
Surgical instrument identification in laparoscopic vid-
eo frames offers four useful applications: 1) feature 
extraction for virtual reality and surgical simulation 
purposes, 2) image-guided surgery using surgical in-
strument information, 3) automatic detection of sur-
gical instruments, aiding in robotic surgeries, and 4) 
improving operation room performance.

Nevertheless, segmentation of laparoscopic im-
ages for instrument detection is a challenging task 
because of the complexity of such images. At the 
same time, presence of surgical instruments in the 
images adds to the complexity of the image seg-
mentation process because of these images’ color, 
texture, and in some cases, boundary variations. In 
this paper, a framework termed SIDF is proposed 
for detection of surgical instruments in laparoscopic 
images; which runs a novel image segmentation al-
gorithm (GNSTISA), capable of combining the re-
sults of multiple segmentation methods to improve 
the quality of segments.

The results of executing the SIDF on a sample of 
complex images revealed that it outperforms the pre-
viously proposed methods. 

Previous surgical instrument detection methods 
[2, 4] could not precisely detect surgical instruments 
in the images shown in Figure 4(a-b), (d), and (i), 
possibly due to the boundary vagueness of surgical 
instruments in these images (the third challenge of 
laparoscopic instrument detection mentioned before). 
Moreover, the method proposed by Doignon et al. [3] 
had a relatively low performance in some images for 
using only color descriptors in identification of surgi-
cal instruments, which is not suitable in varied illu-
mination conditions. On the other hand, this method 
cannot discriminate between instrument regions and 
dark shadows; hence, it is not accurate enough to 
detect surgical instruments in the images shown in 
Figure 4(a-i).

Although the images displayed in Figure 4 are com-
plex, our proposed SIDF, is capable of identifying all 
surgical instruments with higher accuracy as com-
pared with the previously developed methods. 

In the future studies, the performance of GNSTISA 
can be evaluated on general applications such as 
segmenting face images, outdoor scene images, and 
etc. GNSTISA can combine two image segmentation 
algorithms, and improve their segmentation perfor-
mances. Therefore, one possible extension of this 
work is using the combination of fast segmentation 
methods in the first stage of GNSTISA algorithm. An-
other possible extension of this study is the evaluation 
of GNSTISA performance using motion descriptors in 
the segmentation process, which would enable a dy-
namic tracking of the instrument during the surgery.

Conclusions
Accurate analysis of laparoscopic videos is a challeng-
ing task due to the complexity of the images. In this 
study, based on the Generalized Near-Set Theory, we 
developed a novel image segmentation algorithm (GN-
STISA) with a higher performance as compared with the 
earlier algorithms. We also proposed a novel Surgical 
Instrument Detection Framework (SIDF), which by al-
lowing filtration of the segmented images obtained from 
GNSTISA, accurately identifies the surgical instrument. 
Examination of SIDF on 300 laparoscopic video frames 
demonstrated that it offers considerably higher accura-
cy compared to the previously developed frameworks. 
Hence, our results recommend preferred use of SIDF 
among parallel methods for practical applications.
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(GNST): generalized near-set theory; (SIDF): surgical in-
strument detection framework; (GNSTISA): generalized 
near-set theory-based image segmentation algorithm
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